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ABSTRACT 

In order to keep its ships and aircraft in an operational status, the U.S. Navy must have 

access to the parts necessary for repair. Current supply warehouses do not always carry 

the required repair parts; therefore, when parts are unavailable, the Navy must either look 

to traditional acquisition sources or utilize manufacturing capabilities available at depot 

and intermediate maintenance activities.   

This thesis examines the potential cost benefits of incorporating additive 

manufacturing (AM), commonly known as 3D printing, and collaborative product life 

cycle management (CPLM) software into these maintenance activities. The research uses 

the knowledge value added (KVA) methodology to analyze modeled data and capture 

and quantify the benefits of introducing AM and CPLM technologies into Navy 

maintenance activities.  

This proof of concept was developed to apply AM and CPLM to as-is and several 

to-be maintenance process models in order to measure the potential benefits. By 

introducing AM and CPLM technologies into the current manufacturing process, the 

notional scenario showed positive results and suggests a significant reduction to cycle 

time and a potential cost savings of $1.49 billion annually. 
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I. INTRODUCTION 

A. BACKGROUND 

The United States Navy needs to keep its ships and aircraft in good working order 

in order to meet the operational requirements that civilian leadership has mandated. 

When one of these units becomes unavailable for operational assignments, the priority is 

on getting broken parts replaced and the unit back into operational status; otherwise, the 

unit cannot serve its purpose for the American taxpayer. In order for a repair part to be 

supplied to the affected unit, it needs to be issued by the Defense Logistics Agency 

(DLA) via the Navy supply system. If the part is not available from the warehouse’s 

shelves, then the DLA needs to acquire it by utilizing the traditional acquisition system or 

by having the part made or repaired by a Navy maintenance facility. This thesis is built 

on previous research conducted by Nathan Seaman (2006) and Christine Komoroski 

(2005). Their work measured the outcome of introducing new information technology 

(IT) in the form of three-dimensional (3D) terrestrial laser scanning and product life cycle 

management (PLM) into the United States Navy public-sector maintenance planning 

yards. Komoroski’s (2005) research showed that by including these technologies, total 

product costs decreased by 89%. Given the increased visibility of additive manufacturing 

(AM), also known as 3D printing, and its inclusion into current private-sector industries 

for the manufacturing of parts and the creation of prototypes, this research builds on 

previous work to see if this technology further can decrease costs within the Navy 

maintenance program. 

Maintenance and upkeep is paramount for the armed services. With the need to 

maintain equipment such as ships, aircraft, and vehicles, each service supports the 

operational requirements set forth by the civilian leadership of the United States 

government. The amount of budget resources committed to maintaining equipment in 

good operational condition is significant. In addition to the responsibility placed on 

Department of Defense (DoD) leadership to be good stewards of the American taxpayer’s 

dollar, there is also the need to find effective cost reduction due to budgetary constraints 

imposed by continuing resolutions. In fiscal year (FY) 2011, the DoD allocated 
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$83 billion (12%)  of its $608 billion budget to support 283 ships, 13,900 aircraft, 800 

strategic missiles, and 311,000 tactical vehicles (Office of the Deputy Under Secretary of 

Defense [Logistics and Materiel Readiness], 2011). FY2012 actual numbers from the 

undersecretary of defense comptroller showed that the Navy spent a total of $9.1 billion 

on maintenance activities: $7.1 billion for ship maintenance, $1.17 billion for depot-level 

(D-level) operations, and $972 million for intermediate-level (I-Level) operations. These 

maintenance activities supported more than 286 deployable battle-force ships and 3,700 

operational aircraft (Department of the Navy [DoN], 2013b) via 47 ships and shore 

depots and eight I-Level maintenance activities (Department of Defense [DoD], 2011).   

B. RESEARCH OBJECTIVES 

Extending Seaman’s (2006) and Komorski’s (2005) research, the current research 

attempts to show whether the adoption of AM technology can provide additional cost 

savings and reduction to the overall cycle time associated with D-Level and I-Level 

repairs to operational assets. An as-is analysis includes the D-Level replacement-part 

processes currently in place in order to create reliable knowledge value added (KVA) 

outputs for return on knowledge (ROK) and return on investment (ROI) estimates. From 

this baseline, the process is reconfigured to allow for the introduction of AM and 

collaborative product life cycle management (CPLM) software as to-be and radical to-be 

models in order to evaluate potential cost savings. 

C. RESEARCH QUESTIONS 

This research attempts to answer the following questions regarding the 

introduction of new technology into Navy maintenance: 

 Is AM a viable technology that can provide repair-part creation and 

improve overall aircraft and ship maintenance processes? 

 Can AM be quickly incorporated into the various Navy maintenance levels 

in order to provide replacement-part production that improves overall 

operational support, thereby increasing readiness? 

 Does the introduction of AM and CPLM increase value and lower cost in 

aircraft and ship maintenance? 
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D. METHODOLOGY 

This thesis utilizes data collected from Navy subject-matter experts (SMEs) at D-

Level maintenance activities. KVA modeling is used similarly to the way it was used in the 

Seaman (2006) and Komoroski (2005) studies: to measure the impact of AM and CPLM 

software on the current as-is process model. SMEs validated the process model, which 

includes estimates of each process and subprocess learning times, number of personnel, and 

how often the process was conducted. Comparisons to the private sector are included in order 

to extrapolate estimations of cost and the value added to these technologies. 

E. SCOPE 

This thesis utilizes KVA to generate ROK and ROI estimates resulting from the 

inclusion of AM and CPLM tools into the Navy’s D-Level maintenance processes. It was 

expected that these technologies would provide additional cost savings. However, it 

needs to be noted that the scope of this research is limited to D-Level maintenance 

activities and does not take into full consideration intermediate and organizational 

maintenance levels. This means that in reference to the overall maintenance program of 

the Navy, this research covers only a portion of the potential that these technologies have 

to offer with respect to cost savings. 

F. ORGANIZATION OF THESIS 

Chapter I included an overview of the research and identified the primary 

objective, focus questions, and methodology. Chapter II reviews applicable literature 

about Navy maintenance levels, the technology of AM, CPLM software, and KVA. 

Chapter III reviews the KVA methodology as utilized in Seaman’s (2006) and 

Komoroski’s (2005) research and explains, with references, how the methodology is used 

to calculate the data obtained from SMEs. Chapter IV describes a nominal D-Level 

maintenance process for the creation of repair parts and identifies underlying assumptions 

for the KVA models. The chapter also applies the KVA methodology outlined in Chapter 

III with respect to as-is, to-be, and radical to-be scenarios in order to estimate ROK and 

ROI values. Chapter IV also includes the analysis of the results. Chapter V concludes 

with interpretations of the findings from Chapter IV and suggests future research 

possibilities.    
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II. LITERATURE REVIEW  

A. INTRODUCTION 

The purpose of this chapter is to initiate discussion about what AM and CPLM 

technologies are in order to determine potential cost savings and other benefits that they 

may offer to the Navy maintenance program. First, the Navy’s traditional acquisition of 

spare parts is explained with respect to how it can hinder repair of operational units due 

to long lag times. This lag time decreases overall operational capability. Then, the Navy’s 

maintenance levels are explained in order to show, in their hierarchy, how the Navy 

expects maintenance to be performed at a particular maintenance level and by whom. 

Next, a technical review of AM is provided to show what its capabilities are (as of 2013) 

in order to provide an improved understanding of where this technology stands in relation 

to a nominal technology life cycle. From there, the process of AM part generation is 

discussed to improve the reader’s understanding of the necessary steps and the expected 

outputs of AM. This discussion also provides the foundation for the assumptions used to 

calculate KVA estimates. Finally, the inclusion of CPLM software into maintenance 

activities is reviewed to further improve communications between stakeholders in terms 

of the added benefit that it brings towards increased productivity and innovation. 

B. ACQUISITION 

To put it simply, when a ship or aircraft is no longer fully operational due to a 

problem caused by a faulty part or piece of equipment, the unit’s maintenance person 

turns the part carcass over to the supply system for issuance of a new repair part. Supply 

either provides a new part or has to requisition for a new part to be ordered. If the part is 

no longer available within the stock system, the DLA goes to the parent company of the 

piece of equipment to acquire the part. If the parent company no longer exists or does not 

make the part anymore, then the DLA has to proceed with finding vendors from the 

private sector and contract out to a winning bidder to have the part made. However, if the 

part can be produced from a Navy maintenance activity, then the DLA, via the Navy 

supply system, can exercise the option to have the repair part made only after exhausting 
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its options. From here, the activity, utilizing the manufacturing materials located on site, 

builds the part and provides it back to the supply system for delivery to the customer.   

C. NAVY MAINTENANCE LEVELS 

In 2011, the Navy employed more than 181,000 military and civilian maintainers, 

27.6% of total DoD maintainers, distributed throughout its maintenance activities, as 

shown in Figure 1. 

 

Figure 1.  DoD Breakdown of Maintainers  

(From DoD, 2011) 

The amount of manpower required to support the overall goal of the Navy’s 

maintenance program, which, according to Office of the Chief of Naval Operations 

Instruction (OPNAVINST) 4700.7L, is to ―maintain the highest practical level of 

materiel readiness and safety to meet the required area of operation’s need while 

minimizing total life cycle cost over the expected life of asset (ship, aircraft, submarine)‖ 

(Chief of Naval Operations [CNO], 2010, p. 6). This goal is supported by the Navy’s 

identification and creation of specific maintenance levels with assigned roles and 

responsibilities. These levels are identified as organizational, intermediate, and depot 

levels of maintenance. Figure 2 shows that given the level of maintenance, the scope of 
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work, skill level required, and complexity of the repair is relative to the expected 

outcome of that activity as described by the DoD Maintenance Fact Book (DoD, 2011). 

 

Figure 2.  Levels of DoD Maintenance  

(From DoD, 2011) 

Figure 3 is an interpretation of the technician’s expected skill level, the 

complexity of work, and the aggregate scope of work that each DoD maintenance level 

encompasses. 
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Figure 3.  U.S. Navy Maintenance Levels (After DoD, 2011) 

1. Organizational-level Maintenance 

Organizational-level (O-Level) maintenance is maintenance that is performed by 

Navy personnel within the organization who hold responsibility for the maintenance 

being accomplished (CNO, 2013). O-Level maintenance is the lowest maintenance level 

and is the first defense against allowing small issues from escalating to significant 

operational and material problems (CNO, 2010). According to the chief of naval 

operations (2010), typical O-Level maintenance includes the following:  

 routine systems and components planned maintenance,  

 corrective maintenance, and 

 assistance to higher level maintenance activities.   

The ability to create spare parts at the O-Level is very limited due to the lack of 

tooling, machinery, raw materials, and skill. For example, an Arleigh Burke guided 
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missile destroyer (DDG) is equipped with one machine shop populated with basic part 

fabrication tooling (lathe, drill press, sheet metal equipment, welders). The four to six 

personnel that make up the machine shop include the Navy’s hull technician (HT) and 

machinery repairman (MR) rates. All of these sailors possess only the initial level 

training from A-School’s, that is provided to them following basic training, with the 

exception of one or two sailors who possess a Navy-enlisted classification (NEC) code 

advanced school. 

2. Intermediate-level Maintenance 

I-Level maintenance is maintenance that is made up of Navy personnel and/or 

civilians, performed for operational units, and carried out within shore intermediate 

maintenance activities (SIMAs), aircraft carriers, fleet support bases, or tenders (CNO, 

2013). I-Level activities require skills, facilities, and capabilities that are higher in scope 

than that of the O-Level but at a level below that of a D-Level (CNO, 2010). According 

to the chief of naval operations (2010), typical I-Level maintenance includes the 

following: 

 installation of alterations, 

 higher level preventative and corrective maintenance beyond the 

capabilities of O-Level facilities and resources,  

 technical assistance to O-Level in diagnosing system or equipment issues, 

and 

 work on equipment that is used as rotational assets.   

I-Level maintenance activities have a greater ability to generate repair parts than 

O-Level maintenance activities due to the increased amount of skilled personnel, 

machinery and manufacturing capability, and on-demand knowledge base resources. The 

I-Level is the first level that can contract to outside resources for the manufacturing of 

parts and services. However, the ability to design and engineer a spare part is limited due 

to the required skill level required of I-Level maintenance.   
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3. Depot-Level Maintenance 

D-Level maintenance is maintenance conducted by industrial activities that 

involves major overhaul, the manufacturing of parts, system modifications, testing, and 

reclamation (CNO, 2013). The degree of skill, facilities, and capacity required at the D-

Level needs to be beyond that of O-Level and I-Level activities (CNO, 2010). D-Level 

maintenance activities include Navy shipyards, private shipyards, original equipment 

representatives (OERs), or specified overhaul points (DOP) designated by Naval Sea 

Systems Command (NAVSEA; CNO, 2010).    

Table 1 summarizes the breakdown of each maintenance activity by personnel, 

complexity, and scope of work. 

Table 1.   Navy Maintenance Activity Breakdown (After CNO, 2010) 

 Personnel Scope of Work Complexity of Work 

Organizational Level Military Low Low 

Intermediate Level Military and Civilian Medium Medium 

Depot Level Civilian High High 

 

D. ADDITIVE MANUFACTURING 

AM, more commonly known as 3D printing, is a process of creating a three-

dimensional object or model from a digital model. Using an AM machine, or printer, 

successive layers of material are laid down in arranged patterns and lines in accordance 

with the digital design. The uses of AM vary and can be found in the areas of industry 

described in Table 2 (http://www.stratasys.com/). 
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Table 2.   Additive Manufacturing in Industry  

(After Stratasys, 2013) 

Industry Companies/Organizations Uses 

Aerospace 
General Electric, ACS, Bell 

Helicopter, Boeing, NASA 

Wire conduit, Unmanned aircraft (UAV) 

Parts, Mars Rover 

Automotive 
BMW, Lamborghini, 

Hyundai, Land Rover 
Design verification, Development 

Defense 
Army, Air Force, Marines, 

Navy 

Tooling, Template Construction, 

Prototyping, New Part Manufacture. 

Medical 
UCLA Medical Center, 

Medtronic, Script Pro 
Prosthetics, Design, Prototyping 

Rapid prototyping is a term that is often used when referring to AM, but in fact, it 

refers to a group of processes that generate prototypes quickly, to include AM, formative 

manufacturing, and subtractive manufacturing. Figure 4 represents a holistic 

representation of rapid prototyping.   

 

Figure 4.  Rapid Prototyping  

(From Grimm, 2004) 

In short, the definition of rapid prototyping is a collection of technologies that are 

driven by computer-aided design (CAD) data to produce physical models and parts 

through one of the previously mentioned manufacturing processes; the result is the 
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completion of a process faster than that which was previously possible (Grimm, 2004). 

The advantage of rapid prototyping is that it can be utilized as a tool to improve 

communication by showing to all members involved in a process (e.g., decision-makers, 

engineers, machinists, manufacturers) what the final product will be (Grimm, 2004). This 

communication enables members to plan, coordinate, and provide feedback on the 

product’s creation. When a design takes physical form, ambiguity, assumptions, and 

perceptions are eliminated from the manufacturing process, and validation of the product 

will occur (Grimm, 2004).  

Subtractive manufacturing refers to the manufacturing process that removes 

material from a block or product base, utilizing either a drill or cutting device. A common 

subtractive manufacturing device is a computer numerical control (CNC) machine. 

Formative manufacturing utilizes molds or other similar templates; liquefied material is 

poured or injected into the mold, resulting in a product.   

AM industry is a growing industry with many companies that offer differing 

processes for a variety of markets. Table 3 shows the different processes, examples of 

companies that build machines for that process, the materials used in the machines, and 

the applicable markets. 
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Table 3.   Additive Manufacturing Processes, Associate Companies, and Markets (From Scott et al., 2012)  

 

Process Example Companies Materials Market

Photopolymerization 3D Systems (US),

Envisiontec (Germany)

Objet (Israel), Polymers, Prototyping

3D Systems (US),

Solidscape (US)

3D Systems (US), Polymers, Metals, Prototyping,

ExOne (US), Casting Molds,

Voxeljet (Germany) Direct Part

Stratasys (US),

Bits from Bytes,

RepRap Polymers Prototyping

EOS (Germany),

3D Systems (US), Polymers, Prototyping,

Arcam (Sweden) Metals Direct Part

Fabrisonic (US), Prototyping,

Mcor (Ireland) Direct Part

Optomec (US), Repair, Direct

POM (US) Part

(Scott, Gupta, Weber, Newsome, Wohlers & Caffrey, 2012)

Additive Manufacturing Porcess Types and Attributes, including example companies, materials utilized in machines, 

and typical markets 

Vat Photopolymerization

Material Jetting

Binder Jetting

Material Extrusion

Powder Bed Fusion

Sheet Lamination 

Directed Energy Deposition

Photopolymers Prototyping

Polymers Prototyping

Paper, Metals

Metals

Foundry Sand

Waxes Casting Patterns
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There are several technologies available for construction using AM. Table 4 

displays the types, machines, and materials used in AM. 

Table 4.   Additive Manufacturing Types, Machines, and Materials 

Type of Additive 

Manufacturing 

Additive Manufacturing 

Machines 

Additive Material Used 

Extrusion Fused deposition modeling 

(FDM) 
Thermoplastics (e.g., PLA, ABS),

 HDPE, eutectic metals, edible 

materials 

Granular Direct metal laser sintering 

(DMLS) 
Most metal alloys 

Electron beam melting (EBM) Titanium alloys 

Selective laser melting (SLM) 
Titanium alloys, cobalt chrome 

alloys, stainless steel, aluminum 

Selective heat sintering (SHS)  Thermoplastic powder 

Selective laser sintering (SLS) 
Thermoplastics, metal 

powders, ceramic powders 

Laminated 
Laminated object manufacturing 

(LOM) 
Paper, metal foil, plastic film 

Light Polymerized Stereolithography 

apparatus (SLA) 
Photopolymer 

Digital light processing (DLP) Photopolymer 

Powder bed and inkjet head 3D 

printing  
Plaster-based 3D printing (PP) Plaster 

Wire 
Electron beam freeform 

fabrication (EBF) 
Most metal alloys 

1. Additive Manufacturing Process 

AM is a more complex operation than what may be perceived. It includes more 

than just loading up a 3D file from a CAD system, pushing a button, and obtaining a 

finished product. Given the different types of AM processes displayed in Table 4, there is 

a general commonality associated with the workflow for the production of rapid 

prototypes. Utilizing what Grimm (2004) discussed regarding the workflow, and adding 

in the design of a product, the following six steps for AM generally occur: 

 product design using CAD,  

 stereolithography (STL) file generation, 

 file verification and repair, 

 file creation, 

 part construction, and 

 part cleaning and finishing. 
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This process is a general, macro view of how to create a part using AM machines and 

does not go into the minute specifics that would be involved with all products. Each type 

of AM machine and the material it uses in order to create an end product has its own 

characteristics that are specific to itself.  

a. Computer-Aided Design Creation  

CAD refers to an application that can represent physical products by using 

math-based, triangular descriptions in order to locate and replicate shapes in either two or 

three dimensions (Schindler, 2010).  3D models created using CAD (see Figure 5) enable 

improvements to quality and reduce overall developmental time and costs by creating a 

model that is precise, easily replicated, and easily conceptualized because the object can 

be rotated and displayed from multiple views (Schindler, 2010).  

 

Figure 5.  3D Computer-Aided Design of a Ship’s Propeller  

(From Solid-Ideas, 2011) 

For AM, CAD models, when complete, are transferred into STL files. STL 

files are 3D digital data of the product that provide the data required for an AM machine. The 

STL file is a neutral file format designed in order to utilize any CAD system to feed the 

required data into the AM machine (Grimm, 2004). From there, the STL file uses a simple 

triangular mesh that approximates the total amount of surface of the part. The overall goal of 
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the STL file is to create a balanced model quality and file size by dictating the allowable 

deviation between the model’s surface and the face of the triangle (Grimm, 2004).   

b. File Verification and Repair 

CAD models and STL generation can possess errors that may affect the 

total quality of the end product. During this step, associated STL software verification 

programs analyze the file for defects and then provide an output for the operator to 

determine whether the STL file is usable (Grimm, 2004). Utilizing an STL repair program, 

the majority of defects can be corrected; however, in some cases, it becomes necessary to 

send the file back to design in order to correct errors. Returning the file back to the design 

stage is often associated with poor CAD modeling techniques (Grimm, 2004).   

c. Build File Creation 

This section of AM prototype generation involves four steps: part 

orientation, support structure generation, part placement, and build file creation. Part 

orientation is a critical step with respect to the amount of time it takes to build a 

prototype. In AM, the axis of an object is built using a coordinate 3D scale in which x and 

y represent length and width, respectively, and z represents height (see Figure 6); as the 

height increases, so does the build time (Grimm, 2004).  

 

Figure 6.  3D Coordinates for Additive Manufacturing (After Grimm, 2004) 
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If a prototype’s purpose is to be used as a template or pattern, the need to 

reduce the amount of ―stair stepping‖ in order to create a smoother surface requires a 

greater amount of time. Stair stepping is an effect created during AM where successive 

layers of material are added on to one another, forming stair-like ridges. This effect is 

reduced by reducing the thickness of the material being applied and results in a smoother 

surface (Grimm, 2004). When considering the design of a prototype, the designer needs 

to take into account a balance between time and quality: a prototype or part built 

vertically yields a higher quality product but takes more time; however, if quality is not 

the priority because the goal is just to communicate the concept to the actors involved, 

then the part should be built horizontally, which reduces the overall build time.   

Given the type of material being used in AM, support structures are 

needed in the production of the prototype or part. Support structures are very important in 

the manufacturing to prevent shifting and reduce or eliminate the amount of sagging or 

slumping of features (Grimm, 2004). Supports provide rigid attachment to the build 

platen (base support structure) and provide support to any overhanging geometry 

(Grimm, 2004).   

AM possesses the capability to create multiple parts simultaneously as 

long as they are properly laid out within the build envelope. The efficient use of a build 

envelope reduces the total time and cost (Grimm, 2004). 

d. Part Construction 

During the part construction phase of AM, the creation of the part is 

conducted at the machine. AM machines, for the most part, operate 24 hours a day 

without human intervention, making this a significant advantage in the cost of labor. The 

only labor involved with part construction is the machine preparation, build launch, and 

the removal of the prototypes upon completion (Grimm, 2004). 

e. Part Cleaning and Finishing 

Cleaning of the part is the most manual, labor-intensive portion of the AM 

process (Grimm, 2004). During this phase, the part is not yet ready to be used and may 
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need to have excess material or support structures removed. Also, based on the type of 

AM machine involved, the type of material used may require other processes and 

machinery for cleaning and finishing (Grimm, 2004).   

2. Technology Life Cycle 

IT plays an important, if not vital, role in industrial and manufacturing 

organizations (Costa & Aparicio, 2007). In the case of AM, it is important to understand 

where AM currently is with the technology life cycle (TLC). The TLC demonstrates the 

commercial gain of a product via its life-cycle phases. It is primarily concerned with the 

overall time and cost needed to develop a technology, the amount of time needed to 

recover the cost of developing a technology, and the process of making a technology 

yield a profit proportionate to the costs and risks involved (Costa & Aparicio, 2007). 

Figure 7 displays a nominal TLC path.  

 

Figure 7.  Technology Life Cycle Path  

(From Costa & Aparicio, 2007) 

With each of the phases of TLC, there are associated technology, operations, and 

costs. Table 5 explains these aspects. 
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Table 5.   Aspects of Technology Life Cycle Phases  

(From Costa & Aparicio, 2007) 

Role versus Technological, Operational, and Economical Dimensions 

 Technology Operation Costs 

Launch Identify 

technologies that 

may answer to 

strategies, and 

obtain in-depth 

knowledge of the 

technology 

adopted. 

 

Identify strategies, 

motivate future 

sponsors of the 

systems, identify the 

needs, and focus on 

the implementation 

of the system and 

not on marginal 

items. 

Look into expenses 

and all their 

dimensions (e.g., 

investments, 

maintenance costs 

or training); and 

control costs, 

quality, and 

execution time. 

Spreading First signs of good 

integration of the 

system with other 

subsystems. 

Maintain good 

services and 

maintenance in 

order to contribute 

to high productivity 

in the organization, 

and make other 

employees 

productive. 

Costs are still high 

in order to expand 

and contribute the 

maximum 

productivity. 

Maturity Still adequate 

integration of 

system with the 

operations of the 

organization. 

The maximization 

of the benefits has 

been achieved and 

there is a balance 

between the 

contributions of the 

system and efforts 

done to make the 

implementation 

happen. 

Reduce costs, 

emphasize the 

maintenance and 

service agreements, 

and carefully 

analyze the tradeoff 

between do and buy. 

Decline Identify 

applications, 

technologies, 

software, and 

hardware 

compatible with the 

technologies used 

by the organization. 

Train and educate 

users to the change. 
Try to profit from 

the legacy system, 

and try to move to 

new applications. 
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With regard to AM, Terry Wohlers and Tim Caffrey (2013) stated in a Society of 

Manufacturing Engineers (SME) journal article that ―it is important to point out where 

the technology is and where it is going‖ (p. 1). The fastest growing application for AM is 

part manufacturing and prototyping, although its potential is still not fully understood or 

utilized (Wohlers & Caffrey, 2013). Assessment from within the industry shows that AM 

is still within the ―spreading/construct‖ phase of its life cycle, proceeding towards 

maturity.  

E. COLLABORATIVE PRODUCT LIFE CYCLE MANAGEMENT  

1. Product Life cycle Management Definition 

CPLM is a business approach that can align and increase the overall efficiency 

and effectiveness of individual activities by utilizing software applications and leveraging 

process improvements (Schindler, 2010). Its ability to be utilized as a strategy instead of 

a system enables product life cycle management (PLM) to be configured in a manner that 

addresses the unique aspect of an organization. The result is that an organization is able 

to address its particular requirements, identify strengths and weaknesses, and invest in 

capital applicable to its needs. CIMdata (n.d.) defines PLM (Product Life cycle 

Management, n.d.) as follows: 

 a strategic business approach that applies a consistent set of business 

solutions that support the collaborative creation, management, 

dissemination, and use of product definition information; 

 supporting the extended enterprise (customers, design and supply partners, 

etc.); 

 spanning from concept to end of life of a product or plant; and 

 integrating people, processes, business systems, and information. 

It is important to note that PLM is not a piece, or pieces, of technology. It is a 

business approach to solving the problem of managing the complete set of product 

definition information—creating that information, managing it through its life, and 

disseminating and using it throughout the life cycle of the product. PLM is also an 

approach in which processes are as important, or more important, than data. It is critical 
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to note that PLM is as concerned with ―how a business works‖ as with ―what is being 

created‖ (CIMdata, n.d.). Figure 8 displays PLM across the life cycle of a product.  

 

Figure 8.  Collaborative Product Life cycle Management Across the Life Cycle  

(From Schindler, 2010) 

PLM software supports a broad range of products that include manufactured items 

like computers, automobiles, software, and public utilities (e.g., gas, water, power) that 

need to be organized and managed (CIMdata, n.d.). The software integrates people, data 

processes, and business systems while providing opportunities for activities to exchange 

information with their enterprise. In addition, implementing PLM allows activities to 

build on and optimize products by increasing collaboration, resulting in reductions in 

costs (Schindler, 2010).  

2. Increased Productivity  

The Navy is similar to the corporate world in that it needs to create value and find 

ways to improve productivity, innovation, collaboration, and quality in order to maintain 

a competitive edge (Grieves, 2006). Productivity, according to Schindler (2010), refers to 
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the ratio of output (quantity of goods or services produced by a firm or industry in a 

given time period) compared to input (the amount of resources or cost to produce the 

good or provide the service). In the corporate world, this output translates to profit. For 

the Navy, where there is no profit generated, productivity is still critical when vying for 

available budget dollars and by optimizing funds that are available (Schindler, 2010). 

Introducing CPLM provides the ability to directly increase productivity by providing ―as 

needed‖ information to users at the right time, thereby eliminating time wasted searching 

for data and recreating designs (Schindler, 2010). 

3. Increased Innovation 

Innovation is a change in a group’s thought process in doing something and can 

be referred to as radical, revolutionary, emergent, or incremental changes to thinking, 

production, or processes (Schindler, 2010). Grieves (2006) stated that ―productivity 

focuses on costs, whiles innovation focuses on adding value for the stakeholder‖ (p. 24). 

Furthermore, he pointed out that innovation is a significant driver behind CPLM and can 

be delineated into (1) product innovation and (2) workflow innovation (Grieves, 2006; 

Schindler, 2010). Product innovation is an improvement to a characteristic of a product 

that in turn adds value by reducing the time and materials required to complete the task 

(Schindler, 2010). An example of product innovation is demonstrated by Boeing in the 

creation of vent ducts for F/A-18 E/F/G Super Hornet jet fighters used by the Navy and 

Marine Corps. Because of the product innovation process, replacement parts are lighter 

and stronger than those created in traditionally formative processes and can be produced 

as needed by the customer versus stockpiling spares within a warehouse (Zelinski, 2012). 

CPLM does not develop new ideas but frees resources (in this case, engineers and 

designers) to focus on innovation because engineers have an increased visibility of what 

the customer needs and can provide value-added solutions without expending additional 

resources (Schindler, 2010).  

Workflow innovation focuses on finding improved methods and technologies in 

order to reduce the amount of time, energy, and resources needed to produce a product or 

provide a service (Schindler, 2010). Engineers at the Naval Surface Warfare Center 
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(NSWC) Port Hueneme developed a new approach for the measurement and alignments 

of the SPY-1 radar output onboard the Navy’s Ticonderoga-class cruisers and Arleigh 

Burke–class destroyers by using products created by AM machines. The original process 

took the ships out of operational employment for six days: two days to erect and take 

down the scaffolding, and four days to conduct the testing. The new process removes the 

need for scaffolding, reduces the overall manpower needed (not counting manpower 

needed to erect the scaffolding) from three to two, and provides a measurement more 

accurate than the original method (Poland, 2008, p. 6). The Navy calculated that this 

innovation will provide an overall savings in excess of $1.6 million over a four-year 

period (Poland, 2008).   

4. Promote Collaboration 

Collaboration is when two or more individuals or organizations work together to 

pursue a common goal (Schindler, 2010). Figure 9 gives a representational picture of 

CPLM brought into the engineering process, (http://www.productlifecycle 

management.com). 

 

Figure 9.  Notional Representation of Product Life cycle Management  

(From Product Life cycle Management, n.d.) 
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5. Improve Quality 

Schindler (2010) stated that ―a product that lacks quality will at best result in 

wasted time, material, and require energy to repair it, and at worst, it could cause injury 

or death‖ (p. 26). CPLM provides a consistent, singular view of the represented product’s 

digital data, which removes ambiguity and builds consensus among its users. By having 

this type of support in the design of a product, CPLM enables improved communication 

and understanding that will lead to overall improvement in the product’s output 

(Schindler, 2010).  

F. SUMMARY 

The purpose of this chapter was to initiate discussion about what AM is and what 

it can bring into the Navy maintenance program. First, it was necessary to show that the 

traditional acquisition of spare parts needed for the repair of operational units can be 

hindered by lag times that only serve to decrease overall operational capability. Then, the 

Navy’s maintenance levels needed to be explained in order to show, in their hierarchy, 

how the Navy expects maintenance to be performed at a particular maintenance level and 

by whom. Displaying the maintenance levels further demonstrated the level of 

complexity of the repair capability associated with the level of skill and scope correlated 

with a particular maintenance level. Describing the differing maintenance levels is 

important because, based on the maintenance-level capability, the ability to generate 

spare parts that are not readily available via supply resources and are time critical to 

repair operational units may have to be assigned to a particular maintenance level. The 

maintenance level’s ability to handle the complexity of the repair part needed to be 

produced relies on personnel skill levels, available machinery and tooling, and on-

demand knowledge resources.   

Next, it is important to discuss the technical analysis of AM to show what its 

capabilities are as of 2013 in order to provide an improved understanding of where the 

technology stands in its life cycle, and to show where in the TLC is in order to show its 

potential. From there, the process of how part generation is performed using AM is 

discussed to demonstrate how the necessary steps, their input requirements, and the 
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expected outputs can be comprehended in order to further the reader to a level of better 

understanding about the assumptions created to support the KVA and process analysis 

models in follow-on chapters. Presenting the background and underlying principles of 

KVA provides the ability to gage why the inclusion of AM into the Navy maintenance 

plan brings the ability to measure the benefit of this type of technology. Finally, this 

chapter looks at the inclusion of CPLM software into maintenance activities to further 

improve communication between stakeholders and the added benefit that it brings.  
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III. METHODOLOGY 

A. PURPOSE 

The purpose of this chapter is to introduce the methodology that was used to 

complete the findings of the main study presented in Chapter IV. The KVA processes 

developed by Housel and Bell (2001) and the completed research conducted by 

Komoroski (2005) and Seaman (2006) were the mainstays in the construction of this 

methodology. From here, the use of KVA and process modeling of a notional Navy D-

Level maintenance activity shows whether the introduction of CPLM tools and AM 

provide any viable change in the output of making repair parts. 

B. KNOWLEDGE VALUE ADDED  

It is first important to understand the concept of value. With the introduction of a 

new IT product into a process within an organization, value may take the form of 

improved competitiveness, the expansion of markets, increased capabilities, and an 

improvement in overall, measurable efficiency (Komoroski, 2005). From here, the 

particular value that an organization or activity gains from the introduction of a new IT 

product, be it CPLM software and/or AM machinery, relies on the already existing 

culture of the organization, its management, and its commitment to maintenance and 

training of its employees (Komoroski, 2005). When determining value, it is often 

described using financial terms and metrics. Most often, these metrics are represented by 

each cost per unit input to the total process output, or outputs over inputs. The issue is 

that these financial methods often fail to capture the overall benefits produced by 

individual processes and resources in common, comparable units that can be measured 

against one another (Komoroski, 2005). When analyzing the working of government 

activities, like D-Level outputs where there is no profit generation, measuring the outputs 

in comparison to for-profit private-sector companies needs to have an alternative 

common unit of measurement in order to determine its value. KVA provides that 

common unit of measurement for value. KVA output is the end result of an 

organization’s process, as shown in Figure 10. 
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Figure 10.  Knowledge Value Added Process in Measuring Output  

(From Housel & Bell, 2001) 

The KVA methodology is a framework that provides analytical analysis of an 

organization’s or activity’s knowledge assets. Knowledge assets are those entities within 

an organization that, through the application of knowledge, provide enhanced products, 

services, and features that ultimately create value (Housel & Bell, 2001). These assets can 

be employees, IT products, organizational capabilities, or specific processes or 

subprocesses. Applying KVA allows the ability to measure these knowledge assets from 

where they reside within the organization, whether that is a core process, IT products, or 

an individual or group of employees. When KVA is used to determine the amount of 

existing knowledge that knowledge assets provide within a core process, no matter where 

they are located, a ratio known as return on knowledge is generated (Housel & Bell, 

2001). When market-comparable metrics are available and revenue comparisons are 

needed, KVA can provide an ROI output (Komoroski, 2005). Table 6 breaks down the 

metrics of ROK and ROI.  
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Table 6.   Knowledge Value Added Metrics  

(From Housel & Bell, 2001) 

 

KVA holds its theory based on the basic principles of thermodynamics with 

specific emphasis on the concept of entropy, meaning a change in the environment or in 

output (Housel & Bell, 2001). Housel and Bell (2001) describe the outputs of an 

organization described as units of complexity. They stated that as an organization collects 

input from sources, value is added to it, thereby changing it to an output; the amount of 

value added due to this change is directly proportionate to the overall amount of 

necessary transformation of the input (Komoroski, 2005). From evaluating its value, it 

can be deduced that a unit of change is a unit of complexity giving a common unit in 

which to measure an organization’s outputs. By thoughtful estimation of this value, KVA 

creates an analytical tool to determine ROK and/or ROI, thereby creating a common unit 

of measurement.  

When the knowledge of core processes within an organization is measured and 

placed into numerical format, decision- and policy-makers are better able to determine 

where inside of their organization they can reengineer a process in order to maximize 

value. The most prevalent benefit of this information stems from better decisions and 

policies because management can see what returns a particular process generates. When 

common units of knowledge are observed within an organization’s core processes and 

measured in terms of cost, management can redirect its investment focus to value creation 

versus cost containment (Komoroski, 2005).   



 30 

 

Figure 11.  Assumptions of Knowledge Value Added  

(From Housel & Bell, 2001) 

The fundamental assumptions of KVA (as presented in Figure 11) represent the 

foundation of the KVA process. Accepting the fundamental assumptions of KVA allows 

the methodology to break all input down into one common unit of output, thereby 

allowing an organization’s processes to become a baseline reference (Komoroski, 2005).   

C. IDENTIFYING AN ORGANIZATION’S CORE PROCESSES  

In order to calculate the amount of knowledge present within each of the 

processes into a manner in which KVA can be applied, a firm understanding of an 

organization’s core processes must be firmly understood. By having a good 

understanding and comprehension of what each process entails, the amount of change 

that a particular element of the process produces can be defined. In the case of this 

research, a business workflow model exists to describe the core processes of a D-Level 

maintenance facility. When the processes and subprocesses are identified, boundaries 
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must be established in order to determine the end output of that process (Housel & Bell, 

2001). If an IT product contributes to a particular process, it must be isolated in order to 

measure the effect it has on that particular process (Komoroski, 2005).   

D. APPROACHES TO KNOWLEDGE VALUE ADDED  

The knowledge residing within a core process can be shown as learning time and 

process description approaches, with a binary query method omitted from this research. 

Theoretically, if either the learning-time approach or the process description approach 

adequately covers the basic KVA assumptions, then the results will be the same as long 

as the approach captures the ―know-how‖ of the process outputs, given its particular 

inputs (Komoroski, 2005). Table 7 shows the three approaches to KVA and displays their 

applicable steps.  
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Table 7.   Three Approaches to Knowledge Value Added  

(From Housel & Bell, 2001) 

 

1. Learning-Time Approach 

Within the learning-time approach, knowledge is embedded within a core process 

and is represented by the total amount of time required for an average individual to learn 

how a process works. In order for a person to adequately learn a process, he or she must 

be able to successfully replicate the process output consistently. Learning time must 

become proportional to the knowledge learned in order to be measured, thereby 

displaying how much knowledge is embedded within that particular process (Komoroski, 

2005). For the purposes of this research, learning time is annotated as actual learning time 
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(ALT). ALT is measured in units of time and represents common units of output, described 

using the variable total knowledge. In the setup for this research, it was determined that 

SMEs in their respective fields would be able to produce supportive estimates of each 

member of a process in which ALT is required. For each estimate, it is essential that the 

amount of knowledge be counted only (1) when it is in use (otherwise there will be an 

inflated estimation for the amount of knowledge for each given process) and (2) if the 

knowledge present is required to accomplish the process (Komoroski, 2005). 

2. Establishing Reliability 

In order to maintain reliability for this research, it was important to calculate the 

correlation between ALT, the ordinal ranking of critical processes, and the relative learn 

time (RLT) for each process (Komoroski, 2005). A correlation value needs to be 

determined between the knowledge times in order to determine reliability. If the 

correlation value is greater than 80%, then the estimated learning time is reliable. If it is 

less than 80%, then the SME estimation needs to be reassessed. ALT, ordinal ranking, 

and RLT are described as follows: 

ALT is an estimate for the period of time it takes to teach the average person how 

to execute a specific process the same way every time, given that there is no time limit to 

learn the process (Komoroski, 2005). 

Ordinal rank measures the amount of complexity within a process by describing 

how difficult it is to learn. The process is ranked in order from the process that is easiest 

to learn to the process that is hardest to learn (Komoroski, 2005).     

RLT is the measurement of the total time required to teach the average person the 

core processes given only 100 units of time (e.g., hours, days, months, years). The SME 

allocates the units according to each process with the expectation that more units 

allocated represents more complex processes. 

Using this manner of correlation between ALT, ordinal rank, and RLT is the 

preferred method in order to obtain a high degree of reliability (Housel & Bell, 2001). 
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3. Total Learning Time 

This research needed to capture the existing amount of knowledge within a process that is 

provided by IT products and did so by taking into consideration the amount of 

automation within a process. The amount of IT used, annotated as a percentage, is added 

to the learning time in order to calculate the total learning time (TLT). According to 

Komoroski (2005), the ―revenue attributed to IT-based knowledge, plus the cost to use 

the IT, often reveals that the value added to processes by IT applications, as shown in its 

resulting ROK ratio, is not always equal to the percentage of IT and automation used in 

the process‖ (p. 53). 

4. Process Instructions Approach 

The purpose of the process instructions approach is to increase the reliability of 

estimates and requires SMEs to break down each process into subprocesses and identify 

the specific instructions of that subprocess in order to provide better estimates of ALT 

(Komoroski, 2005). Collecting and adding up the ALT of each subprocess thereby 

enables an improved estimate of the core process’s ALT. 

E. MEASURING KNOWLEDGE AND UTILITY EXECUTIONS 

The total number of times that a knowledge asset provides value, and the total 

amount of time that it takes to execute that process (cost), needs to be accounted for and 

provide the inputs for the ROK value (Komoroski, 2005). From there, the total time that 

it takes to do a process is multiplied by the cost and provides a flow-based estimate of the 

total cost. 

1. Return on Knowledge 

ROK is a ratio where the numerator represents the percentage of revenue 

allocated to the amount of knowledge required to complete a given process successfully 

and in proportion to the total amount of knowledge required, thereby generating the total 

outputs of that process (Komoroski, 2005). ROK’s denominator shows the cost of 

knowledge execution. If ROK is high, then the knowledge asset is better utilized; 
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conversely, if the ROK is low, then the knowledge asset is not being utilized enough. 

KVA enables the measurement of how each process is performing by converting 

knowledge into a value, thereby giving decision-makers the ability to gage how well an 

investment into training is paying off (Komoroski, 2005). This analytical display can help 

determine how knowledge can be more effectively employed in order to produce better 

returns. In the case of IT not increasing ROK, it can be assessed that the investment in IT 

has not met its worth.  

F. SUMMARY  

The purpose of this chapter was to describe the methodology involved in 

determining whether the inclusion of AM and CPLM software into a notional Navy 

maintenance level will increase benefits. If an added benefit is present, it can be 

determined that costs related to doing business within a level of maintenance will be 

decreased. Utilizing the KVA methodology provides an avenue in which creation of the 

ratios ROK and ROI shows whether this inclusion of IT into the maintenance process 

reduces overall costs.   
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IV. METHODOLOGY PROOF OF CONCEPT 

A. INTRODUCTION 

The Navy’s active component for maintenance activities includes 12 shore-based 

aviation intermediate maintenance departments (AIMDs) located within six fleet 

readiness centers (FRCs); six shore-based overseas AIMDs; 21 shipboard AIMDs (e.g., 

aircraft carriers, large-deck amphibious ships); and eight ship/submarine intermediate 

maintenance activities (IMAs) located at shore facilities and afloat tenders (DoD, 2011). 

The proof of concept for this research was generated from data collected from the FRC in 

Naval Air Station North Island, San Diego, California, which is one of six aviation D-

Level facilities. The ability of a FRC to manufacture parts extends to a significant amount 

of platforms, such as F/A-18, E-2, C-2, MH/SH-60 (variants), and LM2500 marine gas 

turbine engines that are utilized onboard most Navy surface combatants. The other 

aviation maintenance depots are geographically dispersed throughout the world in order 

to support fleet operations.   

The following proof-of-concept analysis takes inputs from SMEs and creates an 

as-is business process model of the outputs (repair parts) generated from the 

manufacturing program of a D-Level maintenance activity. Utilizing the KVA 

methodology that is focused on the manufacturing program, reengineered processes are 

implemented into the maintenance activity in order to see whether there is a positive or 

negative impact on the notional process. Two IT assets—AM machines (3D printers) and 

CPLM software—are brought into two notional, incremental scenarios in order to see the 

potential impacts. Introducing these two IT assets is assessed and analyzed in a first 

incremental to-be (AM only) model and a second incremental to-be (AM + CPLM) 

model, respectively. Finally, a radical to-be model is displayed to demonstrate AM’s 

potential to produce final repair parts. If, after the IT assets are introduced, ROK 

increases and other cost estimates improve, then value was added into the process, and 

vice versa if a decrease in ROK occurs.  
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The information used in the creation of the KVA models was generated through 

data collected from SMEs who possess extensive experience working within Navy D-

Level maintenance activities. This information was then generalized in order to better 

understand the entire process that would normally be undertaken by these organizations 

throughout the Navy. It has to be understood that this data is not perfect but can be 

deemed reliable based on the high levels of correlation shown within the KVA rankings. 

Also, this research did not take into account the costs associated with the implementation 

of CPLM software, the purchase of AM machines as a capital investment, or the cost of 

the material involved. This type of overhead cost analysis was not performed due to time 

constraints associated with the scope of the KVA research and analysis. The area of 

research involved with the introduction of this technology as a means of providing cost 

reduction and improvement to the operational readiness of the Navy provides multiple 

sub layers that can be modeled to increase the overall accuracy. 

B. NOTIONAL DEPOT-LEVEL PROCESS 

The total aggregate data was obtained through interviews with SMEs involved 

with D-Level maintenance repair part manufacturing within the Navy. Each SME has 

more than 15 years’ experience in manufacturing technology in either military or 

commercial industries. SMEs explained seven core processes needed to create repair 

parts at the D-Level, as shown in Figure 12. The notional part that is to be created, called 

Widget A, is a highly complex part that, according to interviews with SMEs, would be 

around $6,000 per unit if purchased from the commercial market. More explanation 

regarding the specifics of each actor’s cost, actual learning time, and assumptions are 

outlined in Section C of this chapter.  
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Figure 12.  Repair Part Manufacturing Process 

This notional process is performed each time a repair part is created at a 

manufacturing shop. The following is a description of each of the core processes within 

repair part manufacturing. It is assumed that this notional core processes is, in most ways, 

in effect at each D-Level maintenance activity that manufactures repair parts. 

1. Request Generation 

The DLA receives a request from the operational unit. This request can go to any 

DLA decision-maker, who then takes an average of two (2) hours (+/- five minutes) to 

evaluate and decide how the part is going to be acquired. If the part is within the stock 

system, the DLA issues the part to the squadron. If not, it is assumed that the original 

equipment manufacturer (OEM) cannot make the part, resulting in the DLA sending a 

request to an FRC. 
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2. Assessment of Request and Planning 

FRC management receives the order from the DLA; convenes a meeting with tech 

librarians, engineers, machinists, quality assurance (QA) inspectors, and mechanics to 

assess the feasibility of creating the repair part; and, if part creation is feasible, generates 

assignments and duties in order to create the part. This meeting can last for two (2) hours 

(+/- 15 minutes), and it is assumed for the purposes of this model that meeting attendees 

are only talking about Widget A and not assessing any other repair parts. Following this 

meeting, the FRC management sends a response to the DLA and, if the part can be 

created, begins the in-house process. 

3. Research of Technical Drawings 

The tech librarian reviews the applicable repository for any tech drawings 

applicable to Widget A. If none are found, the tech librarian contacts the OEM and other 

D-Level activities to find out whether the tech drawing is out there. If a 3D CNC tech 

drawing is found, the tech librarian delivers it to the machinist for production. At this point, 

the assumption is that the engineer does not have to make any changes or modifications to 

the tech drawing. If no tech drawing is found, then the tech librarian confers this 

information to the engineer. This process takes four (4) hours (+/- 30 minutes).  

4. 3D Computer-Aided Design Drawing Creation 

The engineer, when notified that the tech drawing is not CNC ready, makes a 

decision on how to generate the file for the machinist. From here, the engineers have the 

option of either creating the tech drawing utilizing CAD (16 hours, +/- one hour) or, if the 

physical part is available, performing a 3D scanning process and generating a CAD file 

(eight hours, +/- 15 minutes). For this physical part, it is assumed that an example of 

Widget A was provided by a source for the use of modeling. Upon completion of a CAD 

file, the engineer delivers it to the machinist. Further down the process, there are two (2) 

instances that could trigger the ―rework‖ activity. The first is if Widget A fails a QA 

inspection, and the second is if it fails the functional check activity. If rework occurs, the 

process takes two (2) hours (+/- 60 minutes), and it is assumed that the engineer is 

performing adjustments to the CAD based on the input that the QA inspectors or 

mechanics provided.  
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5. Repair Part Creation 

The machinist, upon receipt of the CAD file, uploads it into the respective CNC 

machine and begins the subtractive manufacturing process utilizing stock pieces of 

aluminum block. Assumptions here are that the machinist understands the CAD file and 

does not have questions for the engineer. This process takes 12 hours (+/- 30 minutes) 

and results in a finished product, which is delivered to QA for inspection.  

6. Quality Assurance 

QA takes Widget A and conducts the inspection in accordance with Federal 

Aviation Administration (FAA) standards on a computer measuring machine. The 

process takes 10 hours (+/- 60 minutes), which results in either the part passing or failing. 

If the part fails, it is sent back to the engineers for rework and proceeds through the 

process cycle again. If the part passes, it is sent to the mechanics. 

7. Functional Check of Repair Part 

Upon receipt of Widget A, a group of three (3) mechanics performs a functional 

check by installing the repair part into an F/A-18, located on site, specifically used for 

this purpose. The process takes 12 hours (+/- 60 minutes) and results in either passing or 

failing the functional check. If the functional check activity results in a failure, the repair 

part is sent back to the engineers with adequate descriptions for the rework process. If the 

part passes, the process ends with the completed part delivered to the squadron. 

C. KNOWLEDGE VALUE ADDED ANALYSIS OF AS-IS SCENARIO 

Appendix B contains the overall KVA summary generated by Process Modeler1 

from data gathered by interviews with SMEs at a FRC and at NAVSEA. This analysis is 

a sample of the generation of repair parts within a typical manufacturing shop found at D- 

and I-Level maintenance activities throughout the Navy. All estimates provided are 

conservative and as accurate as possible. 

                                                 
1 Process Modeler is a trademark of Savvion Business Models licensed to Naval Postgraduate School.  
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1. Employees 

The number of employees involved with the building of this reengineering model 

was the number of personnel needed to manufacture one repair part and did not include 

the total amount of personnel who belong to FRC machining shop. From the number of 

personnel utilized within the process, the total amount of knowledge available was 

calculated and provided.  

2. Time Calculation to Create a Repair Part 

From interviews with SMEs at a FRC, it was estimated that around 27,000 repair 

parts for aircraft are produced each year by about 400 employees. The range of these 

parts extend from very simple, low-complexity parts that are generated quickly to highly 

complex parts that require significantly more time to produce. It is this type of complex 

part that was used to support the modeling within this research due to the assumption that 

modeling the most complex parts that can be generated supports a more conservative 

approach for estimation. In all, a FRC produces about 5,000 of these highly complex 

parts each year, approximately 19% of the total output per year. Given this estimate and 

using the modeling software, it takes approximate 39 man hours to complete a single 

repair part.    

3. Actors and Actual Learning Time 

This section describes the roles of each actor and the assumptions made about the 

educational background required to perform each particular function within the 

manufacturing process. The information about the actors was provided through 

interviews with SMEs, and the assumptions were generated based on those interviews.   

The as-is process model involves seven (7) actors: DLA decision-makers, 

management, tech librarians, engineers, machinists, QA, and mechanics. For the purposes 

of this research, all actors, with the exception of DLA decision-makers, belong to the 

FRC organization and reside within one shop/building. The workers identified here work 

an eight-hour day in a shop that operates only one eight-hour shift, 230 work days a year.  
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Assumptions about the actors’ roles and hourly rates were generated from 

interviews with FRC SMEs. Hourly rates were derived from U.S. government general 

schedule (GS) and wage grade (WG) pay scales and determined based on the average 

employee within that particular function. Locality and special pays were not factored in, 

all hourly rates are based on hourly basic rates (B) by grade and step, and no overtime 

rates are included. Private-sector wage comparisons, when calculated, are measured at 

50% more per hour (1.5 x calculation). The following are the actors’ assumptions: 

A. DLA decision maker—determines that the repair part generation is too 

cost prohibitive to utilize OEM and makes the decision to utilize FRC 

resources to generate the part. This person has a minimum of a bachelor’s 

degree and three years’ experience in the position. He or she is a GS-11, 

Step 5, and earns an hourly rate of $27.31 per hour. 

 

B. FRC management—receives the request from the DLA then confers with 

all members involved in the repair part generation to calculate feasibility. 

This person issues assignments and assigns personnel involved with the 

repair part generation. He or she is a GS-12, Step 5, and earns an hourly 

rate of $32.73.  

 

C. Tech librarian—responsible for maintaining the part technical diagrams 

(tech drawings) library and researching in-house databases. This person 

possesses on-the-job training (OJT), is a GS-6, Step 5, and earns an hourly 

rate of $16.60.  

 

D. Engineer—responsible for the creation of tech drawings utilizing 

blueprints, two-dimensional (2D) CADs, or 3D CADs. This person holds a 

degree in engineering with five years’ experience. He or she uses his or 

her own choice of CAD software and is highly proficient. This person is a 

GS-11, Step 5, and earns an hourly rate of $27.31. 

 

E. Machinist—responsible for creating the repair part utilizing available 

manufacturing machinery located within the shop. This person has been 

trained through technical schooling and holds certificates of training for 

the machines utilized from the manufacturer. He or she is a WG-9, Step 5, 

and earns an hourly rate of $25.70. 

 

F. QA inspector—responsible for inspection of created repair parts generated 

by the machinist against industry and government standards. In the case of 

the F/A-18, those standards include all applicable FAA regulations. This 

person is certified by FAA and Naval Air Systems Command (NAVAIR) 

to perform QA on Department of the Navy (DoN) aircraft. He or she has 
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an average of six years’ experience, is a GS-9, Step 5, and earns an hourly 

rate of $22.57. 

 

G. Mechanic—responsible for the installation and testing of repair parts 

utilizing an F/A-18 test bed. This person’s training was completed by a 

technical school and is certified and qualified by Commander Naval Air 

Forces Instruction (COMNAVAIRFORINST) 4790 (series) to perform 

maintenance by NAVAIR on its aircraft. He or she has an average of 10 

years’ experience, is a WG-8, Step 5, and earns an hourly rate of $24.25.  

ALT is the amount of time required in order for a worker to perform a particular 

function. For example, in the case of the QA inspector, in addition to the training required 

to become certified as a QA inspector, this individual has to undergo specific training on 

computer measuring machines in order to operate them, comprehend and interpret results, 

and generate reports. This training time takes 100 hours of additional training, so 100 

hours are used for ALT with regard to QA inspectors. In addition, the assumption is that 

the knowledge utilized per function is counted only if it is actually used to produce a unit 

of output.  

4. Determining Value 

Each function within the process of making a repair part involves a percentage 

amount of IT, ranging from 0% to 100%. This percentage (%IT) represents the amount of 

knowledge embedded within that function due to the IT supporting it. Measuring the 

amount of embedded IT is important to account for the IT resources involved in the 

process and to make consistent, conservative estimates. Utilizing the %IT is required to 

calculate the TLT. When calculating TLT for instances of low-percentage IT enablers 

(<60%), ALT is added into the multiplied output of ALT x %IT. High %IT is considered 

to be any function that has greater than 60% IT and utilizes ALT+(ALT/(1-%IT)) in order 

to calculate TLT.   
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5. As-Is Process Analysis 

a. Key Assumptions 

As mentioned earlier, the data gathered for this research was based on 

interviews with SMEs, related research, and current information about Navy maintenance 

activities. From this, the following assumptions were made and modeled: 

 Even with 400 personnel assigned to the machine shop, only 13 personnel 

are involved with the generation of a repair part. The cost is calculated 

using 13 actors. 

 The market-comparable labor contractor rate is 50% greater than the 

current government labor rate. 

 The price per common unit of output is $0.05. 

 The cost of the materials to produce the parts, the cost of machinery and 

IT assets, and infrastructure cost (e.g., electrical) are not included.   

b. Knowledge Value Added Analysis  

Table 8 shows the key as-is KVA estimates that were utilized in order to 

determine process benefits, ROK, and ROI. 

From modeling and analysis, the as-is produced, on average, one repair 

part every 39.4 man hours. Correlation of the data measured at 90.4%, well above the 

80% needed for data validation. Within the as-is process, the importance of engineers, 

machinists, and mechanics performing their functions provided significant input towards 

ROK and ROI. It was observed through the modeling that the need to perform rework 

greatly impacted the amount of repair part generation output due to particular time-

intensive steps having to be performed again, at a cost of man hours. The reduction of the 

cost due to rework was the focus of the first increment of the to-be model. 
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Table 8.   As-Is Knowledge Value Added 

 
 

Processes

Actual 

Learning 

Time

Nominal 

Learning 

Time

Times 

Fired

(Cycle 

Time)

#PEOPLE % IT

Total 

Learning 

Time

Total 

Output 

per hour

 Total 

Input per 

Hour 

 Cost per 

hour 

Numerator

(Benefit)

Denominator

(Cost)

Total 

Knowledge
ROK

Cost to 

Benefit 

Ratio

Determine Request 40 7 0.0163563 1 20% 48 0.7851032 0.0330901 $141.29 $3.88 $4.68 37.68495219 82.93% -17.07%

Performs Function Check 80 10 0.0100654 3 10% 88 2.6572723 0.3637393 $72.75 $13.12 $26.46 701.5198792 49.59% -50.41%

Receive Request 16 3 0.0251636 1 10% 17.6 0.4428787 0.0519628 $26.50 $2.19 $1.38 7.794665325 158.83% 58.83%

Sends Rqst to Depot 2 1 0.0163563 1 20% 2.4 0.0392552 0.0330901 $26.50 $0.19 $0.88 0.09421238 22.11% -77.89%

Convert CAD Drawing 80 9 0.0025164 1 20% 96 0.2415702 0.0182436 $27.31 $1.19 $0.50 23.19073981 239.43% 139.43%

Determines how to design Part 80 8 0.0100654 1 20% 96 0.9662808 0.020005 $27.31 $4.77 $0.55 92.76295924 873.41% 773.41%

Reverse Engineer 160 16 0.0075491 1 50% 240 1.8117765 0.1235531 $27.31 $8.95 $3.37 434.8263714 265.16% 165.16%

Rework of Part Design 2 8 0.0515853 1 20% 2.4 0.1238047 0.1004026 $27.31 $0.61 $2.74 0.297131354 22.30% -77.70%

Send CAD  to Machinist 1 1 0.0100654 1 10% 1.1 0.011072 0.0025164 $27.31 $0.05 $0.07 0.012179165 79.56% -20.44%

Library Check 16 2 0.0150981 1 20% 19.2 0.2898842 0.0612733 $16.60 $1.43 $1.02 5.565777554 140.74% 40.74%

Interprets CAD 24 7 0.0100654 1 10% 26.4 0.2657272 0.0099396 $25.70 $1.31 $0.26 7.015198792 513.70% 413.70%

Make Part 120 14 0.0666834 1 70% 204 13.603422 0.7973075 $25.70 $67.18 $20.49 2775.098138 327.84% 227.84%

Inspects Part 100 14 0.0666834 1 40% 140 9.3356819 0.6612984 $22.57 $46.10 $14.93 1306.995471 308.88% 208.88%

Totals: 721 100 N/A 15 N/A 981.1 30.573729 2.2764217 $494.16 $150.98 $77.31 5392.857675 195.29% 95.29%

AS IS
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6. First Increment To-Be Knowledge Value Added Analysis 

a. Key Assumptions 

The purpose of the first increment, as mentioned earlier, was to reduce 

cost associated with rework within the manufacturing of repair parts. AM machinery was 

introduced into the process, and, using the modeling software, the following assumptions 

were applied: 

 Through the development of a prototype part, communication will 

improve between engineers, machinists, mechanics, and QA 

actors.   

 Engineers are responsible for printing out the prototypes from the 

AM machines.  

 The conceptual output provided by AM machines will reduce the 

amount of time for each following actor to complete their portion 

of the process. For example, machinists will be able to better orient 

the CAD model on CNC machines, reducing support structures and 

finishing times.  

 Feedback for the design that is provided to the engineers will be 

beneficial to the end-result product. For example, mechanics will 

be able to fit test the prototype to ensure that the part to be 

generated does not have to be modified after creation. 

 The cost of the materials to produce the parts, the cost of 

machinery and IT assets, and infrastructure cost (e.g., electrical) 

are not included.   

 AM machines can only produce prototypes of repair parts; they 

cannot produce actual repair parts. 

b. First Increment Knowledge Value Added Analysis 

Table 9 shows the results from the modeling and analysis of the first to-be 

increment. 
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Table 9.   First Incremental To-Be Model With Additive Manufacturing Knowledge Value Added Estimates 

Processes

Actual 

Learning 

Time

Nominal 

Learning 

Time

Times 

Fired

(Cycle 

Time)

#PEOPLE % IT

Total 

Learning 

Time

Total 

Output 

per hour

 Total 

Input per 

Hour 

 Cost per 

hour 

Numerator

(Benefit)

Denominator

(Cost)

Total 

Knowledge
ROK

Cost to 

Benefit 

Ratio

Determine Request 40 7 0.0285275 1 20% 48 1.3693219 0.0594689 $141.29 $9.43 $8.40 65.72745227 112.23% 12.23%

Function Check 80 10 0.0102407 3 10% 88 2.703533 0.3759052 $72.75 $18.62 $27.35 713.7327189 68.08% -31.92%

Mechanic Fit Check 20 0 0.0080462 3 10% 22 0.5310511 0.0278692 $72.75 $3.66 $2.03 35.04937459 180.39% 80.39%

Receive Request 16 2 0.0438885 1 10% 17.6 0.772438 0.0932631 $26.50 $5.32 $2.47 13.59490893 215.24% 115.24%

Sends Rqst to Depot 8 1 0.0285275 1 20% 9.6 0.2738644 0.0614439 $26.50 $1.89 $1.63 2.629098091 115.83% 15.83%

AM Print O ut 40 8 0.0241387 1 90% 76 1.8345403 0.3195084 $27.31 $12.63 $8.73 139.4250603 144.79% 44.79%

Adjust Design 20 0 0.0065833 1 20% 24 0.1579987 0.0068027 $27.31 $1.09 $0.19 3.7919684 585.70% 485.70%

Convert CAD Drawing 80 9 0.0043889 1 20% 96 0.4213298 0.0379636 $27.31 $2.90 $1.04 40.44766294 279.87% 179.87%

Determines how to design Part 80 8 0.0175554 1 20% 96 1.6853193 0.0375247 $27.31 $11.61 $1.02 161.7906517 1132.57% 1032.57%

Reverse Engineer 160 16 0.0131666 1 50% 240 3.1599737 0.2203204 $27.31 $21.76 $6.02 758.3936801 361.68% 261.68%

Rework of Part Design 8 6 0.0087777 1 20% 9.6 0.084266 0.0175554 $27.31 $0.58 $0.48 0.808953259 121.04% 21.04%

Send to Machinist 2 0 0.0175554 1 10% 2.2 0.0386219 0.0048277 $27.31 $0.27 $0.13 0.084968181 201.74% 101.74%

Library Check 16 3 0.0263331 1 20% 19.2 0.5055958 0.1099408 $16.60 $3.48 $1.83 9.707439105 190.79% 90.79%

Interprets CAD 24 2 0.0175554 1 10% 26.4 0.4634628 0.0199693 $25.70 $3.19 $0.51 12.23541804 621.93% 521.93%

Machinist Plan 20 0 0.0241387 1 10% 22 0.5310511 0.0278692 $25.70 $3.66 $0.72 11.68312486 510.62% 410.62%

Make Part 120 14 0.0351108 1 70% 520 18.257626 0.4355936 $25.70 $125.74 $11.19 9493.965328 1123.19% 1023.19%

Inspects Part 100 14 0.0351108 1 40% 140 4.9155146 0.365372 $22.57 $33.85 $8.25 688.172043 410.51% 310.51%

Q A Inspector Plans 20 0 0.0241387 1 10% 22 0.5310511 0.0278692 $22.57 $3.66 $0.63 11.68312486 581.44% 481.44%

Totals: 854 100 N/A 22 N/A 1478.6 38.236559 2.2490674 $669.80 $263.33 $81.97 12162.92298 321.24% 221.24%

TO BE- with AM
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The data provided for the to-be output met the correlation requirement by 

achieving 90.7%. Analysis showed that implementing AM technology into the process 

produced ROK and ROI at 321.24% and 221.24%, respectively. The amount of rework 

was reduced by 45%, affecting and thereby reducing the amount of time to produce a 

repair part from 39.5 man hours to 22.7 man hours, a reduction of 57%.   

7. Second Increment To-Be Knowledge Value Added Analysis 

a. Key Assumptions 

The second increment to-be will introduce CPLM software into repair part 

production in order to see if it will make an impact to the overall process. Assumptions 

pertaining will introduction include the following: 

 All D- and I-Level maintenance activities have populated the 

CPLM repository with 3D CAD technical drawings that they have 

obtained through OEM resources or by in-house production. 

 The 3D CAD technical drawings are valid, meaning that they are 

uncorrupted files that can be utilized by engineers and machinists. 

 Benefits from the first incremental to-be model remain in place. 

 The cost of purchasing and implementing CPLM software is 

already accounted for. 

 The cost of the materials to produce the parts, the cost of 

machinery and IT assets, and infrastructure cost (e.g., electrical) 

are not included. 

b. Second Increment Knowledge Value Added Analysis 

Table 10 shows the key KVA estimates that were utilized in order to 

determine process benefits, ROK, and ROI.  
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Table 10.   Second Incremental To-Be Knowledge Value Added Analysis With Additive Manufacturing and Collaborative Product 

Life cycle Management 

 
 

Processes

Actual 

Learning 

Time

Nominal 

Learning 

Time

Times 

Fired

(Cycle 

Time)

#PEOPLE % IT

Total 

Learning 

Time

Total 

Output 

per hour

 Total 

Input per 

Hour 

 Cost per 

hour 

Numerator

(Benefit)

Denominator

(Cost)

Total 

Knowledge
ROK

Cost to 

Benefit 

Ratio

Determine Request 40 7 0.0505247 1 20% 48 2.4251846 0.0998834 $141.29 $19.03 $14.11 116.4088613 134.88% 34.88%

Function Check 80 10 0.0181371 3 10% 88 4.788185 0.6478818 $72.75 $37.58 $47.13 1264.080839 79.74% -20.26%

Mechanic Fit Check 20 0 0.0038865 3 10% 22 0.2565099 0.0112709 $72.75 $2.01 $0.82 16.9296541 245.54% 145.54%

Receive Request 16 2 0.0777303 1 10% 17.6 1.3680529 0.1488535 $26.50 $10.74 $3.94 24.07773028 272.21% 172.21%

Sends Rqst to Depot 8 1 0.0505247 1 20% 9.6 0.4850369 0.0983288 $26.50 $3.81 $2.61 4.65635445 146.10% 46.10%

AM Print O ut 40 8 0.0116595 1 90% 440 5.1301982 0.0952196 $27.31 $40.27 $2.60 2257.287213 1548.44% 1448.44%

Adjust Design 20 0 0.0038865 1 20% 24 0.0932763 0.0023319 $27.31 $0.73 $0.06 2.238631947 1149.60% 1049.60%

Convert CAD Drawing 80 9 0.0038865 1 20% 96 0.3731053 0.0287602 $27.31 $2.93 $0.79 35.81811115 372.84% 272.84%

Determines how to design Part 80 8 0.007773 1 20% 96 0.7462106 0.0101049 $27.31 $5.86 $0.28 71.63622231 2122.34% 2022.34%

Reverse Engineer 160 16 0.0038865 1 50% 240 0.9327633 0.0571318 $27.31 $7.32 $1.56 223.8631947 469.22% 369.22%

Rework of Part Design 8 6 0.0155461 1 20% 9.6 0.1492421 0.025651 $27.31 $1.17 $0.70 1.432724446 167.21% 67.21%

Send to Machinist 2 0 0.007773 1 10% 2.2 0.0171007 0.0007773 $27.31 $0.13 $0.02 0.037621454 632.28% 532.28%

Library Check 16 3 0.0466382 1 20% 19.2 0.8954528 0.1830548 $16.60 $7.03 $3.04 17.19269335 231.29% 131.29%

Interprets CAD 24 2 0.007773 1 10% 26.4 0.2052079 0.0069957 $25.70 $1.61 $0.18 5.417489312 895.85% 795.85%

Machinist Plan 20 0 0.0116595 1 10% 22 0.2565099 0.0112709 $25.70 $2.01 $0.29 5.643218033 695.06% 595.06%

Make Part 120 14 0.0621842 1 70% 520 32.335795 0.720171 $25.70 $253.80 $18.51 16814.61329 1371.27% 1271.27%

Inspects Part 100 14 0.0621842 1 40% 140 8.7057909 0.5958026 $22.57 $68.33 $13.45 1218.810727 508.14% 408.14%

Q A Inspector Plans 20 0 0.0116595 1 10% 22 0.2565099 0.0093276 $22.57 $2.01 $0.21 5.643218033 956.33% 856.33%

Totals: 854 100 N/A 22 N/A 1842.6 59.420132 2.7528177 $669.80 $466.38 $110.30 22085.7878 422.84% 322.84%

TO BE- with AM + CPLM
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From the results, the addition of CPLM software complemented the 

previous incremental change, producing ROK and ROI percentages of 422.84% and 

322.84%, respectively. The amount of time it took to create a part was reduced from 22.7 

man hours to 12.8 man hours on average, a savings of 56%.   

8. Radical To-Be Knowledge Value Added Analysis 

The purpose of conducting this radical to-be KVA was to model the potential of 

AM reaching a mature state that allows the generation of complete repair parts. This 

capacity, coupled with CPLM software, needed to be modeled in order to estimate 

potential savings to the Navy. 

a. Key Assumptions 

This model dramatically impacted the actors and processes leading up the 

final produced part and included the following assumptions:   

 AM machines print out ready-to-use parts. 

 Machinists will be able to directly retrieve the CAD files from 

CPLM and will print out the parts from AM machines instead of 

engineers.  

 Tech librarians are no longer required because the machinists will 

be able to retrieve the CAD files. 

 Previous benefits from first and second increments remain in place. 

 The cost of the materials to produce the parts, the cost of 

machinery and IT assets, and infrastructure cost (e.g., electrical) 

are not included. 

b. Radical Knowledge Value Added Analysis 

Table 11 shows the results from the modeling and analysis of the radical 

to-be increment. 
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Table 11.   Radical To-Be Increment With Additive Manufacturing and Collaborative Product Life cycle Management 

 

.  

Processes

Actual 

Learning 

Time

Nominal 

Learning 

Time

Times 

Fired

(Cycle 

Time)

#PEOPLE % IT

Total 

Learning 

Time

Total 

Output 

per hour

 Total 

Input per 

Hour 

 Cost per 

hour 

Numerator

(Benefit)

Denominator

(Cost)

Total 

Knowledge
ROK

Cost to 

Benefit 

Ratio

Receive Request 16 7 0.0866927 1 40% 22.4 1.9419159 0.1595145 $26.50 $18.79 $4.23 43.49891634 444.40% 344.40%

Sends Rqst to Depot 8 5 0.0563502 1 70% 34.666667 1.9534749 0.1144343 $26.50 $18.90 $3.03 67.72046429 623.15% 523.15%

AM Print O ut 40 15 0.0606849 1 91% 484.44444 29.398449 0.6055483 $25.70 $284.39 $15.56 14241.91537 1827.39% 1727.39%

Adjust Design 20 8 0.0606849 1 60% 32 1.9419159 0.0593845 $25.70 $18.79 $1.53 62.14130906 1230.87% 1130.87%

Function Check 80 15 0.0187834 3 10% 88 4.958821 0.6315561 $72.75 $47.97 $45.95 1309.128739 104.41% 4.41%

Inspects Part 100 40 0.0606849 1 40% 140 8.4958821 0.54443 $22.57 $82.19 $12.29 1189.423494 668.84% 568.84%

CPLM Check 8 5 0.0563502 1 90% 88 4.958821 0.0511487 $32.73 $47.97 $1.67 436.3762462 2865.41% 2765.41%

Request Part File 8 5 0.0043346 1 60% 28 0.1213697 0.0130039 $32.73 $1.17 $0.43 3.398352839 275.85% 175.85%

Totals: 280 100 N/A 10 N/A 917.51111 53.77065 2.1790204 $265.18 $520.16 $84.68 17353.60289 614.25% 514.25%

RADICAL TO BE- with AM + CPLM
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Radical to-be increment resulted a significant reduction in the overall time 

to produce a repair part, decreasing it to 11.2 man hours per part. ROK and ROI slightly 

increased to 614.25% and 514.25%, respectively. The radical to-be model provided the 

most significant reduction to the overall cost of producing a part, at a marginal cost of 

$619 per part.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. RESEARCH LIMITATIONS 

Several limitations were present while conducting this research, given the state of 

AM technology in 2013. As previously mentioned, the analysis of cost to implement AM 

and CPLM technology was not included due to the time constraints and the lack of 

available data. In addition, the study of risk analysis from overhead costs relating to 

implementation, and the application of real options approach, were not performed. 

Suggestions for further research into these areas are provided at the end of this chapter.   

B. RESEARCH QUESTIONS 

From the analysis of this research, the cost savings from the implementation of 

AM and CPLM technology was determined to be very substantial for the creation of 

repair parts at Navy D- and I-Level maintenance activities. These technologies provide 

viable technological capabilities that can improve the capacity and quality of output from 

these maintenance activities, thereby enabling increased productivity in the direct support 

to operational units. AM and CPLM, as of 2013, have been implemented in at least one 

D-Level maintenance activity, demonstrating that the incorporation of these technologies 

is possible for the Navy to use this activity as a model for AM inclusion.    

1. PREDICTED COST SAVINGS 

The result from the introduction of AM and CPLM into the Navy’s D-Level 

maintenance activities indicated substantial cost savings. Extrapolating this model across 

the entire D- and I-Level maintenance activities indicated potential significant cost 

savings as a result of implementing AM and CPLM to make repair parts for operational 

units. Extrapolating D- and I-Level maintenance activities from the Navy’s operations 

and maintenance FY2012 budget (see Appendix B): 

 The FY2012 maintenance budget for the Navy’s D-Level and I-Level 

activities was $1.80 billion, distributed among 47 (ship and shore-based) 

maintenance activities. It is estimated that 30% of the annual budget for 

the 47 maintenance activities is spent on manufacturing repair parts, which 
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includes labor costs; the result of cost-benefit for the Navy is $642.60 

million. 

 The cost to implement AM and CPLM manufacturing technology is not 

included. 

 All 47 maintenance activities have the ability to manufacture parts via a 

machine shop. 

Table 12 shows the results from each cost savings model given the addition of the two 

technologies for all Navy D- and I-Level maintenance activities.   

Table 12.   Extrapolated Cost Savings for the Navy 

 ROK 

Cost-

Benefit 

Ratio 

Cost Savings per Year 

As Is 195 % 51.20% 0 

To Be (AM) 321% 221.24% $68.12 million 

To Be 

(AM+CPLM) 
423% 322.84% $178.64 million 

Radical To Be 614% 514.25% $1.47 billion 

 

By implementing AM and CPLM, the Navy’s maintenance activities stand to 

provide a considerable cost savings from their current operations. The Navy stands to 

benefit the most from the radical to-be model, which infers that AM technology matures 

to a level of producing direct replacement-part capability. AM, combined with CPLM, 

yields the greatest cost/benefit and provides a forecasted $1.47 billion in cost savings.  

C. RECOMMENDATIONS TO THE NAVY 

Throughout the course of this research, there was a common thread about the 

potential that AM and CPLM technology possesses. Although it is a relatively new 

technology within the manufacturing industry, AM and CPLM hold the ability to 

communicate ideas, increase collaboration, and improve efficiency of processes among 
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stakeholders. More importantly, they can improve in the manufacturing process that can 

increase the operational readiness of the fleet by providing quality repair parts when 

needed. AM technology capability is growing and heading to a higher level of capacity. 

This technology, with the inclusion of CPLM in an organization, should be implemented 

because it provides the ability to obtain the right information at the right time because the 

information is available from within a shared repository. Navy leadership should look 

into this enabler and monopolize on its ability to share information between entities and 

provide a viable venue to enable innovation from the personnel within each activity. The 

greatest impedance to this opportunity stands in the way of traditional acquisition 

methods and business relationships with private industry. Traditional acquisition methods 

inhibit the capabilities of producing repair parts that are possessed within the Navy’s 

maintenance activities. Existing acquisition policies and directives force the Navy to look 

outside instead of inside existing lifelines for the generation of repair parts, making 

operational units highly dependent on these entities. However, it is important that the 

introduction of these technologies, especially CPLM, be based on strategic policies that 

support collaboration and guide the management of information. 

D. FOLLOW-ON AND FUTURE RESEARCH OPTIONS 

The potential of including AM and CPLM in order to reduce costs for the creation 

of repair parts to maintain operational assets is significant. The significance this research 

opens many opportunities for other areas of research to better support decision- and 

policy-makers within the Navy.   

1. Real Options 

The use of real options to evaluate the viability of introducing AM and CPLM 

into the Navy’s maintenance activities was not included in this research but should be 

highly considered in future research in order to support policy- and decision-makers. The 

following options present themselves: 

 Implement AM technology and CPLM software at all D-Level 

maintenance activities, and continue their implementation to I-Level if 

successful. 
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 Implement AM technology, without CPLM software, at all D-Level 

maintenance activities, and continue its implementation to I-Level if 

successful. 

 Implement CPLM software between D-Level and systems commands in 

order to promote the sharing of information. Establish policies for the 

expectations and use of CPLM software between these entities.  

 Continue with the current as-is process. 

2. Other Areas of Potential Research 

The following questions highlight potential areas of research: 

 How can the barriers to adoption of 3D laser scanning technology and 

CPLM be overcome when these two technologies are combined with AM? 

 Utilizing risk-analysis methods, how much risk is involved with the 

addition of AM and CPLM technology into Navy maintenance activities? 

 What are the potential cost savings of implementing AM and CPLM 

within the Navy’s I-Level maintenance activities? 

 What is the feasibility of implementing AM and CPLM within the Navy’s 

O-Level maintenance activities? 

 What is the cost associated with implementing AM assets throughout the 

Navy’s maintenance activities? 

 What system dynamics are affected by the implementation of AM and 

CPLM into the Navy’s maintenance activities? 

 What barriers are associated with implementing CPLM software given 

current policies associated with the Navy/Marine Corps Intranet? 

 What are the associated costs and benefits of training active-duty 

personnel on AM technology?  

 What are the potential benefits and cost savings for the Navy in 

collaborating with discharged personnel who undergo training through 

non-profit organizations like Workshop for Warriors and are hired on as 

part of the civilian workforce at Navy maintenance activities? 
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APPENDIX A. SAVVION MODEL OUTPUTS 

 

Figure 13.  As-Is Model 
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Figure 14.  First Incremental To-Be Model With Additive Manufacturing  
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Figure 15.  Second Incremental To-Be Model With Additive Manufacturing and 

Collaborative Product Life cycle Management 
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Figure 16.  Radical To-Be Model With Additive Manufacturing and Collaborative Product 

Life cycle Management 
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APPENDIX B. AIRCRAFT AND SHIP MAINTENANCE BUDGET 

 
 

Figure 17.  FY 2014 President’s Budget Submission- Operation and Maintenance 

(From Department of the Navy [DoN], 2013a, pp. 80) 
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Figure 18.  FY 2014 President’s Budget Submission- Operation and Maintenance (From DoN, 2013a, pp. 122) 
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